Для чего нужен фазовращатель в двигателе?

Неисправность фазорегулятора

    156 1 175k

Неисправности фазорегулятора могут заключаться в следующем: он начинает издавать неприятные трескающие звуки, замирает в одном из крайних положений, нарушается работа электромагнитного клапана фазорегулятора, формируется ошибка в памяти ЭБУ.

С неисправным фазорегулятором хотя и можно ездить, но необходимо понимать, что двигатель будет работать не в оптимальном режиме. Это повлияет на расход топлива и динамические характеристики двигателя. В зависимости от возникшей проблемы с муфтой, клапаном или системой фазорегулятора в целом, будут отличаться симптомы неисправности и возможность их устранения.

Принцип действия фазорегулятора

Чтобы разобраться почему трещит фазорегулятор или клинит его клапан, имеет смысл разобраться в принципе действия всей системы. Это даст лучшее понимание поломок и дальнейших действий по их ремонту.

На различных оборотах двигатель работает не одинаково. Для холостых и низких оборотов характерны так называемые «узкие фазы», при которых скорость отвода выхлопных газов невелики. И наоборот, для больших оборотов характерны «широкие фазы», когда объем выпускаемых газов большой. Если на низких оборотах будут использоваться «широкие фазы», то отработанные газы будут смешиваться со вновь поступающими, что приведет к снижению мощности двигателя, и даже его остановке. А когда на высоких оборотах включаться «узкие фазы», то приведет к снижению мощности мотора и его динамике работы.

Существует несколько типов систем фазорегуляторов. VVT (Variable Valve Timing), разработана Volkswagen, CVVT — используется Kia и Hyindai, VVT-i — применяется Toyota и VTC — устанавливаются на движки Honda, VCP — фазорегуляторы Renault, Vanos / Double Vanos — система, используемая в BMW. Далее рассмотрим принцип действия фазорегулятора на примере автомобиля «Рено Меган 2» с 16-ти клапанным двигателем К4М, поскольку выход его из строя является «детской болезнью» этой машины и ее владельцы чаще всего сталкиваются с неработающим фазорегулятором.

Управление происходит через электромагнитный клапан, подача масла к которому регулируется электронными сигналами с дискретной частотой 0 или 250 Гц. Весь этот процесс контролируется электронным блоком управления на основании сигналов, поступающих от датчиков двигателя. Включение фазорегулятора происходит при возрастающей нагрузке на двигатель (значение оборотов от 1500 до 4300 оборотов в минуту) когда соблюдаются следующие условия:

  • исправные датчики положения коленчатого (ДПКВ) и распределительного валов (ДПРВ);
  • отсутствуют неисправности в системе впрыска топлива;
  • наблюдается пороговое значение впрыска фаз;
  • температура охлаждающей жидкости находится в пределах +10°…+120°С;
  • повышенная температура масла двигателя.

Возвращение фазорегулятора в исходное положение происходит когда обороты снижаются при тех же условиях, но с тем отличием, что рассчитано нулевое смещение фаз. В этом случае запорный плунжер блокирует механизм. Таким образом, «виновниками» неисправности фазорегулятора могут быть не только он сам, но и электромагнитный клапан, датчики двигателя, неисправности в моторе, сбои в работе ЭБУ.

Признаки неисправности фазорегулятора

О полном или частичном выходе фазорегулятора из строя можно судить по следующим признакам:

  • Увеличение шумности работы двигателя. Из района установки распределительного вала будут исходить повторяющиеся лязгающие звуки. Некоторые автолюбители говорят, что они похожи на работу дизельного мотора.
  • Нестабильная работа двигателя в одном из режимов. Мотор может хорошо держать холостые обороты, но плохо разгоняться и терять мощность. Или наоборот, нормально ездить, но «захлебываться» на холостых. На лицо общее снижение выходной мощности.
  • Повышенный расход топлива. Опять же, в каком-то режиме работы мотора. Желательно проверять расход топлива в динамике по бортовому компьютеру либо диагностическому прибору.
  • Повышение токсичности выхлопных газов. Обычно их количество становится больше, и они приобретают более резкий, чем ранее, топливный, запах.
  • Повышается расход моторного масла. Оно может начать активно выгорать (уменьшается его уровень в картере) либо терять свои эксплуатационные свойства.
  • Нестабильные обороты после запуска двигателя. Это обычно продолжается около 2…10 секунд. В это же время треск от фазорегулятора сильнее, а потом он немного стихает.
  • Формирование ошибки рассогласования коленчатого и распределительного валов или положения распредвала. У разных машин их код может отличаться. Например, у «Рено» ошибка с кодом DF080 прямо указывает на проблемы с «фазиком». У других машин зачастую возникает ошибка p0011 или p0016, указывающих на рассинхронизацию системы.

Обратите внимание, что кроме этого, при выходе фазорегулятора из строя может проявляться только часть указанных признаков или проявляются они на разных машинах по-разному.

Причины неисправности фазорегулятора

Неисправности делят непосредственно по фазорегулятору и по его управляющему клапану. Так, причинами неисправности фазорегулятора являются:

  • Износ поворотного механизма (лопатки/лопасти). В обычных условиях это происходит по естественным причинам, и менять фазорегуляторы рекомендуется через каждые 100…200 тысяч километров пробега. Ускорить износ может загрязненное либо некачественное масло.
  • Смещение либо рассогласование установленных значений поворотных углов фазорегулятора. Обычно это происходит из-за того, что поворотный механизм фазорегулятора в его корпусе превышает допустимые углы поворота по причине износа металла.

А вот причины поломки клапана vvt другие.

  • Выход из строя сальника клапана фазорегулятора. У автомобилей Рено Меган 2 клапан фазорегулятора установлен в углублении в передней части двигателя, где много грязи. Соответственно, если сальник теряет герметичность, то пыль и грязь извне смешивается с маслом и попадает в рабочую полость механизма. Как результат — заклинивание клапана и износ поворотного механизма самого регулятора.
  • Проблемы с электрической цепью клапана. Это может быть ее обрыв, повреждение контакта, повреждение изоляции, замыкание на корпус либо на провод питания, снижение или повышение сопротивления.
  • Попадание пластиковой стружки. На фазорегуляторах часто лопатки делаются из пластмассы. По мере их износа они меняют свою геометрию и выпадают из посадочного места. Вместе с маслом они попадают в клапан, распадаются и измельчаются. Это может привести либо к неполному ходу штока клапана, либо даже к полному его заклиниванию.

Также причины отказа фазорегулятора могут крыться в сбое работы других связанных элементов:

  • Некорректные сигналы от ДПКВ и/или ДПРВ. Это может быть связано как с проблемами с указанными датчиками, так и с тем, что фазорегулятор износился, из-за чего распределительный либо коленчатый вал находятся в положении, выходящим за допустимые границы в конкретный момент времени. В данном случае вместе с фазорегулятором нужно проверить датчик положения коленвала и проверить ДПРВ.
  • Проблемы в работе ЭБУ. В редких случаях в электронном блоке управления происходит программный сбой и даже при всех корректных данных он начинает выдавать ошибки, в том числе в отношении фазорегулятора.

Демонтаж и чистка фазорегулятора

Проверку работы фазика можно выполнить и без демонтажа. Но для выполнения проверки по износу фазорегулятора его необходимо снять и разобрать. Чтобы найти где он находится нужно ориентироваться по переднему краю распредвала. В зависимости от конструкции мотора демонтаж самого фазорегулятора будет отличаться. Однако в любом случае, через его кожух перекинут ремень ГРМ. Поэтому нужно обеспечить доступ к ремню, а сам ремень нужно снять.

Отсоединив клапан всегда проверяйте состояние фильтрующей сетки. Если она грязная ее нужно почистить (промыть очистителем). Чтобы почистить сетку нужно аккуратно раздвинуть ее в месте защелкивания и демонтировать с посадочного места. Сетку можно промыть в бензине либо другой чистящей жидкости при помощи зубной щетки или другого нежесткого предмета.

Сам клапан фазорегулятора также можно очистить от масла и нагара (как снаружи, так и внутри, если это позволяет его конструкция) используя карбклинер. Если клапан чистый, то можно переходить к его проверке.

Как проверить фазорегулятор

Существует один простой метод, как можно проверить, работает фазорегулятор в двигателе или нет. Для этого необходимы лишь два тонких провода длиной около полутора метров. Суть проверки заключается в следующем:

  • Снять штекер с разъема клапана подачи масла в фазорегулятор и подключить туда подготовленные проводки.
  • Второй конец одного из проводов нужно подсоединить на одну из клемм аккумулятора (полярность в данном случае неважна).
  • Второй конец второго провода оставить пока в подвешенном состоянии.
  • Запустить двигатель на холодную и оставить работать на холостых оборотах. Важно, чтобы масло в движке было остывшим!
  • Подключить конец второго провода ко второй клемме аккумулятора.
  • Если двигатель после этого начинает «задыхаться», значит, фазорегулятор работает, в противном случае — нет!

Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:

  • Выбрав на тестере режим измерение сопротивления, замерьте его между выводами клапана. Если ориентироваться на данные руководства Меган 2, то при температуре воздуха +20°С оно должно находиться в пределах 6,7…7,7 Ом.
  • Если сопротивление ниже — значит, имеет место замыкание, если больше — обрыв. В любом случае клапана не ремонтируют, а меняют на новые.

Измерение сопротивления можно выполнить и без демонтажа, однако нужно проверить и механическую составляющую клапана. Для этого понадобится:

  • От источника питания 12 Вольт (АКБ авто) подайте напряжение дополнительными проводками на электрический разъем клапана.
  • Если клапан исправен и чист, то при этом его поршень выдвинется вниз. Если напряжение убрать — шток должен вернуться в исходное положение.
  • Далее нужно проверить зазор в крайних выдвинутых положениях. Он должен быть не более 0,8 мм (можно воспользоваться металлическим щупом для проверки зазоров клапанов). Если он меньше, то клапан нужно прочистить по описанному выше алгоритму.После выполнения чистки электрическую и механическую проверки следует, а затем принимать решение о замене. повторить.

Ошибка фазорегулятора

В случае, если на Рено Меган 2 в блоке управления сформировалась ошибка DF080 (цепь изменения характеристики распределительного вала, обрыв цепи), то нужно в первую очередь проверить клапан по приведенному выше алгоритму. Если он работает нормально, то в таком случае необходимо «прозвонить» по цепи провода от фишки клапана до электронного блока управления.

Чаще всего проблемы возникают в двух местах. Первое — в жгуте проводов, которые идут с самого двигателя на блок управления двигателем. Второе — в самом разъеме. Если проводка целая, то смотрите разъем. Со временем пины на них разжимаются. Чтобы их поджать нужно выполнить следующие действия:

  • снять пластиковый держатель с разъема (сдернуть вверх);
  • после этого появится доступ к внутренним контактам;
  • аналогично нужно демонтировать заднюю часть корпуса держателя;
  • после этого поочередно достать через заднюю часть один и второй сигнальный провод (действовать лучше по очереди, чтобы не перепутать распиновку);
  • на освободившейся клемме необходимо при помощи какого-то острого предмета нужно поджать клеммы;
  • собрать все в исходное положение.

Отключение фазорегулятора

Многих автолюбителей волнует вопрос — можно ли ездить с неисправным фазорегулятором? Ответ — да, можно, но нужно понимать последствия. Если же вы по каким-то причинам все же решите отключить фазорегулятор, то сделать это можно так (рассматривается на том же Рено Меган 2):

  • отсоединить штекер от разъема клапана подачи масла на фазорегулятор;
  • в результате возникнет ошибка DF080, а возможно и дополнительные при наличии сопутствующих поломок;
  • чтобы избавиться от ошибки и «обмануть» блок управления, необходимо между двумя выводами на штекере вставить электрический резистор сопротивлением около 7 Ом (как указывалось выше — 6,7…7,7 Ом для теплого времени года);
  • сбросить возникшую в блоке управления ошибку программно либо отсоединив на несколько секунд минусовую клемму аккумулятора;
  • снятый штекер надежно закрепить в подкапотном пространстве, чтобы он не оплавился и не мешал другим деталям.

Заключение

Автопроизводители рекомендуют менять фазорегуляторы через каждые 100…200 тысяч километров пробега. Если он застучал раньше — в первую очередь нужно проверить его клапан, так как это проще. Глушить или не глушить «фазик» — решать автовладельцу, поскольку это приводит к негативным последствиям. Демонтаж и замена самого фазорегулятора — это трудоемкое занятие для всех современных машин. Поэтому выполнять такую процедуру можно только, если у вас есть опыт работ и соответствующие инструменты. Но лучше обратиться за помощью в автосервис.

Принцип работы фазовращателя

Для чего нужны фазовращатели

ФАЗОВРАЩАТЕЛЬ

ФАЗОВРАЩА́ТЕЛЬ — уст­рой­ст­во для из­ме­не­ния фа­зы элек­трических (элек­тро­маг­нит­ных) ко­ле­ба­ний. При­ме­ня­ет­ся в ав­то­ма­ти­ке, пре­об­ра­зо­вательной, из­ме­рительной и СВЧ-тех­ни­ке для из­ме­не­ния фор­мы вход­но­го сиг­на­ла, ком­пен­са­ций фа­зо­вых ис­ка­жений сиг­на­лов, фа­зо­вой мо­ду­ля­ции, соз­да­ния за­дан­ных фа­зо­вых сдви­гов сиг­на­лов в ко­ге­рент­ных ра­дио­сис­те­мах (напр., в фа­зи­ро­ван­ных ан­тен­ных ре­шёт­ках) и др.

Большинство современных ДВС все более активно получают систему изменения фаз газораспределения.

Фиксированные фазы газораспределения заставляют конструкторов ДВС проектировать мотор так, чтобы присутствовала уверенная тяга в диапазоне низких и средних оборотов, но при этом оставался запас мощности для поддержания набранной скорости и дальнейшего ускорения автомобиля при выходе ДВС на режимы около зоны максимальных оборотов.

Система изменения фаз газораспределения VVT (англ. Variable Valve Timing) создана для динамичной корректировки рабочих параметров механизма газораспределения.

Читайте также  Чем раскоксовать поршневые кольца на двигателе?

Данное управление осуществляется с учетом различных режимов работы силового агрегата.

Эта система позволяет добиться повышения мощности мотора и моментной характеристики. Она обеспечивает экономию горючего, а также снижает токсичность выхлопных газов в процессе работы двигателя.

Кроме этого, она влияет на основные параметры работы газораспределительного механизма. К таким параметрам относят моменты открытия и закрытия впускных и выпускных клапанов, длительность времени открытия клапана и высоту его подъема. От этого зависит продолжительность такта впуска и выпуска, что выражается тем углом, на который повернут коленчатый вал двигателя по отношению к мертвым точкам (ВМТ и НМТ) во время движения поршня в цилиндре. Форма кулачка распределительного вала определяет фазу газораспределения, так как указанный кулачок оказывает прямое воздействие на впускной или выпускной клапан ГРМ.

Для чего необходима система изменения фаз газораспределения

В режиме холостого хода наиболее рациональными становятся «узкие» фазы газораспределения, под которыми понимается позднее открытие и ранее закрытие клапанов. При этом исключается перекрытие фаз, под которым понимается время одновременного открытия впускного и выпускного клапана. Это необходимо для того, чтобы исключить попадание выхлопных газов во впуск и выброс топливно-воздушной смеси в выпускной коллектор.

Выход мотора на режим максимальной мощности означает повышение оборотов, так как распредвал крутится быстрее и время открытия клапанов сокращается. Для того чтобы не терялась мощность и крутящий момент на высоких оборотах сохранялся, в двигатель должно поступать намного больше топливно-воздушной смеси, а выпуск отработавших газов должен быть реализован максимально эффективно. Задача решается путем раннего открытия клапанов и увеличения времени их открытия, делая фазу «широкой». Фаза перекрытия также расширяется до максимума с ростом оборотов, что необходимо для качественной продувки цилиндров.

Если мотор работает на низких оборотах, нужны максимально короткие фазы газораспределения.

Время открытия клапана должно быть увеличено до максимума, параллельно обеспечивая такты впуска и выпуска, а также эффективное перекрытие.

Сам кулачок распредвала имеет форму, которая способна обеспечить как реализацию узкой, так и широкой фазы.

Проблема заключается в том, что фиксированная форма кулачка не позволяет одновременно добиться узких и широких фаз газораспределения.

Системы изменения фаз газораспределения

система поворота распредвала;

кулачки распредвала с различным профилем;

система изменения высоты подъема клапанов;

система на основе гидроуправляемой муфты;

Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением.

Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.

Данная муфта конструктивно включает в себя:

ротор, который соединен с распредвалом;

корпус, которым выступает шкив привода распредвал.

В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.

Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.

Фазовращатели ГРМ

Электронное управление автоматически регулирует работу гидроуправляемой муфты.

Система такого управления включает в себя:

группу входных датчиков;

электронный блок управления;

список исполнительных устройств.

Система управления получает показания от датчика Холла, который производит оценку положения распредвалов. Дополнительно задействованы и другие датчики, которые используются ЭБУ для управления работой всего двигателя.

К таковым относят датчик, измеряющий частоту вращения коленвала, температурный датчик охлаждающей жидкости (ОЖ), датчик расхода воздуха и другие. Сигналы от этих датчиков подаются в ЭБУ, который после отправляет соответствующий сигнал на специальное управляющее (исполнительное) устройство.

Таким устройством, на которое воздействует электронный блок управления двигателем, является электромагнитный клапан (электрогидравлический распределитель). Клапан представляет собой распределитель, который при необходимости открывает доступ потоку моторного масла к гидроуправляемой муфте, а также реализует отвод масла от фазовращателя. Это зависит от того, в каком режиме работает силовой агрегат.

Данная схема изменения фаз газораспределения с использованием муфты задействуется в момент работы двигателя на холостом ходу, (мотор работает на самых низких оборотах), в режиме максимальной мощности на высоких оборотах, а также в том режиме, когда осуществлен выход ДВС на максимум крутящего момента.

Система ступенчатого изменения фаз газораспределения

Здесь используются решения, основанные на использовании кулачков распредвала разной формы. Благодаря такому способу удается достичь ступенчатого изменения момента времени, на который открывается клапан, а также изменить саму высоту подъема клапанов. Распределительный вал в таких системах управления фазами газораспределения выполнен так, что имеет сразу два кулачка малого размера, а также один кулачок большего размера. Меньшие кулачки при помощи специального рокера (коромысла) соединяются с впускными клапанами. Большой кулачок отвечает за перемещение одного незадействованного коромысла.

Трехступенчатое регулирование фаз газораспределения

Такая система позволяет переключаться с малых кулачков на большой зависимо от режима работы ДВС. Переход между режимами достигается благодаря тому, что происходит срабатывание специального механизма блокировки. Указанный блокирующий механизм основан на гидравлическом приводе.

Когда мотор работает на низких оборотах и при незначительной нагрузке, впускные клапаны приводятся в действие малыми кулачками распределительного вала, фазы газораспределения в таком режиме имеют небольшую продолжительность (узкая фаза).

Если двигатель раскручивается до определенных оборотов, система управления активирует механизм блокировки. В результате происходит соединение коромысел малых и большого кулачков, что обеспечивает жесткость конструкции. Соединение происходит при помощи особого стопорного штифта, а усилие на впускные клапаны начинает поступать от единственного большого кулачка. Малые кулачки распредвала на высоких оборотах двигателя становятся неактивными.

Выход на режим максимальных оборотов заставляет впускные клапаны работать от центрального кулачка большого размера. Указанный кулачок имеет особый профиль, который специально подобран для достижения максимального подъема клапанов, что означает повышение отдачи от ДВС на мощностных режимах работы агрегата. Такой подход значительно расширил возможности управления параметрами ГРМ для эффективного регулирования работы двигателя на различных режимах.

Системы изменения фаз газораспределения

В обычном двигателе фазы газораспределения определяются формой кулачка распределительного вала и остаются неизменными во всех диапазонах работы двигателя. Однако постоянные фазы газораспределения не позволяют создавать оптимальные процессы смесеобразования.

Чтобы варьировать фазами газораспределения, необходимо изменять положение распределительного вала относительно коленчатого.

Холостой ход. На этом режиме работы следует устанавливать такой угол поворота распределительного вала, который соответствует самому позднему началу открытия впускных клапанов (максимальный угол задержки, при минимальном перекрытии клапанов). Этим обеспечивается минимальное поступление отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя и снижение расхода топлива.

Режим низких нагрузок. Перекрытие клапанов уменьшается для минимизации поступления отработавших газов во впускной трубопровод, что улучшает стабильность работы двигателя.

Режим средних нагрузок. Перекрытие клапанов увеличивается, что позволяет снизить «насосные» потери, при этом часть отработавших газов поступает во впускной трубопровод, что позволяет снизить температуру рабочего цикла и вследствие этого содержание оксидов азота в отработавших газах.

Режим высоких нагрузок при низкой частоте вращения коленчатого вала. На этом режиме обеспечивается раннее закрытие впускных клапанов, что обеспечивает увеличение крутящего момента. Небольшое или нулевое перекрытие клапанов заставляет двигатель бо­лее четко реагировать на изменение положения дроссельной заслонки, что, например, очень важно в транспортном потоке.

Режим высоких нагрузок при высокой частоте вращения коленчатого вала. Для того чтобы получить максимальную мощность при высокой частоте вращения коленчатого вала, необходимо перекры­тие клапанов около ВМТ с большим углом поворота коленчатого вала. Это связано с тем, что мощность в наиболь­шей степени зависит от максимально возможного количества топливно-воздушной смеси, попадающей в цилиндр за ко­роткое время, но, чем выше частота вращения, тем меньше время, отводимое на заполнение цилиндра.

Главными задачами системы изменения фаз газораспределения являются:

  • улучшение качества работы двигателя на холостом ходу
  • снижение расхода топлива
  • оптимизация крутящего момента в области средних и высоких частот вращения коленчатого вала
  • увеличение внутренней рециркуляции отработавших газов с сопутствующим ей снижением температуры газов при сгорании и уменьшением выброса оксидов азота
  • увеличение мощности в области высоких частот вращения коленчатого вала

Системы изменения фаз газораспределения двигателя

Variable Valve Timing — система изменения фаз газораспределения двигателя (международное название систем такого типа)

ФИКСИРОВАННЫЕ ФАЗЫ

Фазами газораспределения принято называть моменты открытия и закрытия впускных и выпускных клапанов, выраженные в градусах поворота коленчатого вала относительно ВМТ и НМТ.
В графическом выражении период открытия и закрытия принято показывать диаграммой.

Если мы говорим о фазах, то изменению могут поддаваться:

    • момент начала открытия впускных и выпускных клапанов;
    • продолжительность нахождения в открытом состоянии;
    • высота подъема (величина, на которую опускается клапан).

Пока ещё большинство двигателей имеют фиксированные фазы газораспределения (но тенденция стремительно меняется). Это значит, что описанные выше параметры определяются лишь формой кулачка распределительного вала. Недостаток такого конструктивного решения в том, что рассчитанная конструкторами форма кулачков для работы двигателя будет оптимальной только в узком диапазоне оборотов. Гражданские двигатели проектируются таким образом, чтобы фазы газораспределения соответствовали обычным условиям эксплуатации автомобиля. Ведь если сделать двигатель, который очень хорошо будет ехать «с низов», то на оборотах выше средних крутящий момент, как и пиковая мощность, будет слишком низким. Именно эту проблему решает система изменения фаз газораспределения.

ПРИНЦИП ДЕЙСТВИЯ VVT

Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на текущий режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:

    • поворотом распределительного вала относительно шестерни распредвала;
    • включением в работу на определенных оборотах кулачков, форма которых подходит для мощностных режимов;
    • изменением высоты подъема клапанов.

Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.

  • Renault – Variable Cam Phases (VCP).
  • BMWVANOS. Как и у большинства автопроизводителей, изначально подобной системой укомплектовывался только распределительный вал впускных клапанов. Система, в которой гидромуфты изменения фаз газораспределительного механизма устанавливается и на выпускной распредвал, называется Double VANOS.
  • Toyota — Variable Valve Timing with intelligence (VVT-i). Как в случае с БМВ, наличие системы на впускном и выпускном распредвалах именуется Dual VVT.
  • Honda — Variable Timing Control (VTC).
  • Volkswagen — выбрал международное название — Variable Valve Timing (VVT).
  • Hyundai, KIA, Volvo, GM — Continuous Variable Valve Timing (CVVT).

КАК ФАЗЫ ВЛИЯЮТ НА РАБОТУ ДВИГАТЕЛЯ

Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах. Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя. Упомянутые колебания способны как приносить пользу, создавая резонансный наддув, так и вред – паразитные колебания, застои. Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.

На низких оборотах максимальное наполнение цилиндров будет обеспечивать позднее открытие выпускного клапана и раннее закрытие впускного. В таком случае перекрытие клапанов (положение, в котором выпускные и впускные клапаны одновременно открыты) минимально, поэтому исключается возможность выталкивания оставшихся в цилиндре выхлопных газов обратно во впуск. Именно из-за широкофазных («верховых») распределительных валов на форсированных моторах часто приходится устанавливать повышенные обороты холостого хода.

На высоких оборотах для получения максимальной отдачи от двигателя фазы должны быть максимально широкими, так как за единицу времени поршни будут прокачивать намного больше воздуха. При этом перекрытие клапанов будет положительно влиять на продувку цилиндров (выход оставшихся выхлопных газов) и последующую наполняемость.

Именно поэтому установка системы, позволяющей подстроить фазы газораспределения, а в некоторых системах и высоту подъема клапанов, под режим работы двигателя, делает двигатель эластичней, мощней, экономичней и в то же время дружелюбней к окружающей среде.

Читайте также  Сколько уходит бензина на прогрев двигателя зимой?

Первооткрывателями системы изменения фаз газораспределения принято считать инженеров Honda. Они воплотили в модели Integra механизм VTEC, что позволило прибавить 1,6 литровому мотору от 40 до 60 л.с.

СИСТЕМЫ С РАЗНОЙ ФОРМОЙ КУЛАЧКОВ

Такие системы появились первыми — инженеры Honda добавили к двум кулачкам управляющими открытием клапанов еще один — третий. Он имел более высокий профиль.
На низких оборотах работали низкопрофильные кулачки, а на высоких вступал в действие высокий.
Разные автоконцерны вскоре выпустили такие системы газораспределения, но уже под другими названиями:

    • HONDA — Variable Valve Timing and Lift Electronic Control (VTEC). Если на двигателе одновременно используется и VTEC, и VVT, то такая система носит аббревиатуру i-VTEC.
    • BMWVANOS.
    • AUDI — Valvelift System.
    • TOYOTA — Variable Valve Timing and Lift with intelligence от Toyota (VVTL-i).
    • MITSUBISHI — Mitsubishi Innovative Valve timing Electronic Control (MIVEC).

ПРИНЦИП РАБОТЫ

Разберем принцип работы VTEC на примере реализации от Honda (остальные системы работают по схожему принципу).

Как вы можете увидеть из схемы, в режиме низких оборотов усилие на клапаны через коромысла передается набеганием двух крайних кулачков. При этом среднее коромысло двигается «вхолостую». При переходе в режим высоких оборотов давлением масла выдвигается запорный шток (блокирующий механизм), который превращает 3 коромысла в единый механизм. Увеличение хода клапанов достигается за счет того, что среднему коромыслу соответствует кулачок распредвала с наибольшим профилем.

Разновидность системы VTEC является конструкция, в которой режимам: низких, средних и высоких оборотов соответствуют разные коромысла и кулачки. На низких оборотах кулачком меньшей формы открывается только один клапан, в режиме средних оборотов два меньших по форме кулачка открывают два клапана, а на больших оборотах уже наибольший кулачок открывает оба клапана (3-stage SOHC VTEC).

К началу 2000 годов большинство автомобилестроителей перешли на простую и надежную систему изменения фаз, где ими управляли не кулачки, а гидравлические механизмы, расположенные в шестернях ремня ГРМ и поворачивавшие распредвал.
Несмотря на то, что, в отличие от систем подобных VTEC, поворот распредвалов не регулирует ширину фаз (ведь клапаны всегда поднимаются на одну и ту же высоту, и длительность их открытия не меняется), у него есть свои преимущества. Точнее, по принципу работы единственное, но ключевое. Эта система изменяет фазы не ступенчато — постоянно.

УСТРОЙСТВО, ПРИНЦИП РАБОТЫ VVT

За угловое смещение распределительного вала отвечает фазовращатель, представляющий собой гидромуфту, работой которой управляет ЭБУ двигателя.

Конструктивно фазовращатель состоит из ротора, который соединен с распредвалом, и корпуса, наружная часть которого является шестерней распределительного вала. Между корпусом гидроуправляемой муфты и ротором находятся полости заполненные маслом. Заполнение их приводит к перемещению ротора, а, следовательно, и смещению распредвала относительно шестерни. В полости масло подается по специальным каналам. Регулировка количества поступающего через каналы масла осуществляется электрогидравлическим распределителем. Распределитель представляет собой обычный электромагнитный клапан, который управляется ЭБУ посредством ШИМ-сигнала. Именно ШИМ-сигнал делает возможным плавное изменение фаз газораспределения.

Система управления, в виде ЭБУ двигателя, использует сигналы следующих датчиков:

    • ДПКВ (рассчитывается частота вращения коленчатого вала);
    • ДПРВ;
    • ДПДЗ;
    • ДМРВ;
    • ДТОЖ.

Очередной виток развития

Ступенчатое изменение продолжительности открытия и высоты подъема клапанов позволяет не только изменять фазы газораспределения, но и практически полностью снять с дроссельной заслонки функцию регулирования нагрузки на двигатель. Речь в первую очередь о системе Valvetronic от BMW. Именно специалисты БМВ впервые добились подобных результатов. Сейчас схожими разработками обладают: Toyota (Valvematic), Nissan (VVEL), Fiat (MultiAir), Peugeot (VTI).

Открытая на небольшой угол дроссельная заслонка создает значительное противодействие движению воздушных потоков. В итоге часть полученной от сгорания топливовоздушной смеси энергии уходит на преодоление насосных потерь, что негативно сказывается на мощности и экономически автомобиля.


1 — Серводвигатель; 2 — Червячный вал; 3 — Возвратная пружина; 4 — Кулисный блок; 5 — Распредвал впускных клапанов; 6 — Рампа; 7 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне впуска; 8 — Впускной клапан; 9 — Выпускной клапан; 10 — Роликовый рычаг толкателя на стороне выпуска; 11 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне выпуска; 12 — Роликовый рычаг толкателя на стороне впуска; 13 — Промежуточный рычаг; 14 — Эксцентриковый вал; 15 — Червячное колесо; 16 — Распредвал выпускных клапанов;

В системе Valvetronic количество поступающего в цилиндры воздуха регулируется степенью подъема и продолжительностью открытия клапанов. Реализовать это получилось при помощи внедрения в конструкцию эксцентрикового вала и промежуточного рычага. Рычаг связан червячной передачей с сервоприводом, управляет которым ЭБУ. Изменения положения промежуточного рычага смещает воздействие коромысла в сторону большего или меньшего открытия клапанов. Более подробно принцип работы показан на видео.

Сочетание фазовращателей на валах, бесступенчатой регулировки хода и длительности открытия клапанов позволяет, по оценкам инженеров, обрести 10–15%-процентное снижение расхода топлива и аналогичную прибавку крутящего момента.

Отказ от ГРМ

Сейчас есть разработки в которых полностью отсутствуют вращающиеся элементы ГРМ: такие как распределительный вал и приводной ремень(цепь), что существенно уменьшает потери на трение. Система электромагнитных соленоидов позволяет управлять работой клапанов. На каждый клапан предусмотрен отдельный соленоид, работу которого контролирует система управления.

Современные системы управления фазами ГРМ

Фаза газораспределения непосредственно определяет эффективность работы двигателя внутреннего сгорания. Фаза ГРМ означает своевременное открытие и закрытие клапанов, а также время клапанов в открытом состоянии.

До момента появления фазовращателей, на всех моторах кулачок распределительного вала непосредственно воздействовал на клапан, и определял время открытия клапанов, время, при котором клапан открыт, а также высоту подъема клапана. Отмечу, что движение топливовоздушной смеси и отработанных газов отличается в зависимости от типа режима работы мотора. Этот параметр определяет эффективность работы двигателя.

При наличии фиксированной фазы газораспределительного механизма, перед конструкторами силовых агрегатов стоит серьезная задача — сделать двигатель таким образом, чтобы в режиме минимальных и средних оборотов сохранялся крутящий момент ближе к пиковому значению, а при достижении максимальных оборотов, полка крутящего момента не упала резко. Ко всему прочему, нужно сохранить эластичность в переходных режимах, а также стабильный холостой ход. Фиксированная фаза не дает возможность охватить все режимы работы двигателя с одинаковой эффективностью, поэтому была придумана система изменения фаз ГРМ.

Система регулировки фаз позволяет в динамическом режиме изменять значения фаз, в зависимости от степени нагрузки двигателя и оборотов. Тем самым, распределительные валы смещаются в фазах, а полка крутящего момента выравнивается. Благодаря фазовращателям можно на ходу корректировать время открытия и закрытия клапанов, время перекрытия, высота подъема клапанов. Фазы газораспределения управляют моментом тактов двигателя, смещая момент фазы в ту, или иную сторону.

Что дает фазовращатель

Максимальная величина КПД на атмосферных моторах во многом зависит от фаз ГРМ. Например: в режиме холостого хода требуется максимально узкая фаза, которая означает более позднее открытие впускного или максимально раннее открытие выпускного клапана. В данном случае перекрытие клапанов исключено, когда оба клапана открыты, ведь малое количество оборотов коленвала позволяет выхлопным газам попасть во впускной коллектор, а топливно-воздушной смеси в выпускной коллектор.

В режиме максимальной мощности требуется большое количество топливно воздушной смеси. Так как коленвал двигается намного быстрее, то времени на открытие клапанов остается крайне мало, отчего на некоторых моторах клапана не успевают закрываться, и “зависают”, встречаясь с поршнем.

Фазовращатель, для максимального наполнения, позволяет раньше открыть клапан, а также увеличить время его открытия, что называется “расширить фазу”. Тем самым, расширяется фаза перекрытия для обеспечения качественной продувки цилиндра.

Кулачок распредвала имеет такую форму, которая обеспечивает широкую и узкую фазу. Проблема фиксированной фазы заключается в невозможности одновременного обеспечения узкой и широкой фазы. Это говорит о том, что инженеры подобрали форму кулачка таким образом, чтобы обеспечить баланс между максимальным крутящим моментом на средних оборотах, и максимальной мощности на высоких оборотах.

Фазовращатель же обеспечивает гибкость, позволяющую подстраивать фазы под конкретный режим работы мотора, а итог такого действия — достижение крутящего момента в необходимом диапазоне оборотов и топливная экономичность.

Какие бывают виды фазовращателей

В современных моторах применяются три вида регулировки фаз ГРМ:

  • система поворота распределительного вала;
  • различный профиль кулачков распредвалов;
  • механизм изменения подъема клапанов.

Гидроуправляемая муфта системы фазовращателя

Ступенчатое изменение фаз газораспределения

Посредством эволюции в моторостроении, инженерам удалось эффективно настраивает расширение и сужение фаз. Подобное решение основывается на ступенчатом исполнении кулачков. Система изменения формы кулачков применяется в моторах Honda (VTEC), Mitsubishi (MIVEC) и Toyota (VVTL-i).

Вышеуказанные системы одинаковы по принципу действия, а именно: распределительный вал здесь имеет два кулачка малой формы и один кулачок большого диаметра. Маленькие кулачки сообщаются с клапаном через рокера, а большой кулачок отвечает за движение незадействующего коромысла.

Эта система, в зависимости от режима работы мотора, позволяет переключаться между большим и малым кулачком, изменяя фазу ГРМ. Эластичность переходного режима обеспечивается гидравлическим блокирующим устройством.

При работе на малых оборотах и холостом ходу задействованы малые кулачки с узкой фазой, а при повышении нагрузки задействован широкофазный большой кулачок.

Система регулировки подъема клапана

Новатором этой технологии в 2001 году стала компания BMW с системой Valvetronic. Эта система позволила отказаться от дроссельной заслонки, а количество впускного воздуха определять высотой подъема клапана. Однако, дроссельная заслонка на двигателе присутствует но она все время открыта.

Лучшее решение от образования разряжения — это открытие клапана тогда, когда требуется максимальное наполнение цилиндра смесью. Время открытия клапана зависит от степени нажатия на педаль газа. Valvetronic позволяет экономить до 15% топлива, а также повысить мощность на 10% относительно мотора с таким же объемом.

Данная система имеет в конструкции вал-эксцентрик и промежуточный вал. Эксцентриковый вал вращается при помощи электродвигателя с червячной передачей. Вращение вала воздействует на промежуточный рычаг, который меняя свое положение, заставляет двигаться коромысло в заданном положении, согласно режиму работы ДВС.

Система работает постоянно, в зависимости от режима работы мотор, диапазон подъема клапана может варьироваться от 0,2 до 12 мм.

Современные системы фазовращателей направлены на достижение максимального КПД двигателя от своевременного смещения фазы ГРМ и нужного подъема клапана. Любая из вышеуказанных систем представляет собой сложную конструкцию, которая требует вмешательства в виде обслуживания и ремонта, как минимум раз в 150 000 км.

Плохо, что распредвал не резиновый, но еще хуже, когда масло грязное

Требования техрегламента по замене масла порой кажутся в какой-то мере надуманными, в какой-то — слишком жесткими с расчетом на некий запас и перестраховку со стороны производителя. Сюда же добавляются наше отсутствие денег или времени, чтобы вовремя обслужить автомобиль, ну, и будем откровенны — элементарные лень и забывчивость. В этой статье мы доходчиво, но тем не менее компетентно раскладываем по полочкам, почему регламент все же соблюдать необходимо, и чем закончатся (непременно «закончатся», а не «могут закончиться»!) игры с заменой масла.

При работе любого двигателя его цилиндры наполняются горючей смесью, которая затем сгорает, после чего продукты сгорания удаляются, чтобы освободить место для следующей порции горючей смеси. Эти процессы в совокупности называются газообменом.

Влияние газообмена на мощность, крутящий момент, расход топлива и токсичность выхлопных газов трудно переоценить. От того, насколько своевременно происходит газообмен, в конечном итоге зависит, что будет получено от двигателя.

Точный порядок газообмена «записан» в профиле кулачков и их угловом расположении на стержне распределительного вала. Расположение кулачков на распредвале определяет порядок работы клапанов в разных цилиндрах двигателя.

Профиль кулачка диктует, когда и как будет открываться, перемещаться и закрываться клапан, которым кулачок управляет. Моменты открытия и закрытия впускных клапанов как раз и называются фазами газораспределения, о которых знают все автомобилисты.

Что плохо — распредвал не резиновый. По причине раз и навсегда заданной формы обеспечить идеальную работу мотора он способен только в достаточно узком диапазоне скоростей вращения коленчатого вала.

Сделать кулачки с профилем, который обеспечивал бы наилучшие динамические и экономические показатели двигателя во всем диапазоне его рабочих режимов, невозможно в принципе. За попытку добиться идеального наполнения цилиндров горючей смесью и удаления отработавших газов на низких оборотах придется расплачиваться при работе двигателя на высоких оборотах и наоборот.

Компромисс тоже ведет к потерям мощности и нерациональному расходу топлива, пусть и менее ощутимым. Борьба с потерями объясняет появление в конструкции газораспределительного механизма систем, позволяющих управлять фазами газообмена в цилиндрах в зависимости от потребности на текущий момент времени.

Читайте также  Как выбрать масло для двигателя автомобиля?

Систем, с помощью которых можно регулировать газораспределение, придумано множество. Например, в системе VTEC, предложенной компанией Honda почти 30 лет назад, каждый отдельный клапан обслуживался сразу двумя кулачками, имеющими различный профиль. Каждый кулачок действовал на свой толкатель, а толкатели поочередно блокировались либо разблокировались при помощи внутреннего поршенька, управляемого давлением в системе смазки. В результате в зависимости от режима работы мотора кулачки через толкатели тоже воздействовали на клапана поочередно. Система была примитивной, поскольку различала лишь два режима двигателя, но Honda не останавливалась на достигнутом и постоянно модернизировала свой VTEC.

Также существуют системы, в которых вместо цельнометаллических используются составные распредвалы с подвижными кулачками, способными изменять угловое положение на стержне. Регулировать фазы можно и с помощью гидравлического натяжителя цепи, которым управляет электромагнитный клапан, изменяющий подачу масла из системы смазки в натяжитель. Правда, таким способом корректируется угловое положение только одного распредвала, коим, как правило, является распредвал впускных клапанов. В результате происходит управление лишь моментами их открытия и закрытия, а также продолжительностью перекрытия клапанов, когда в конкретном цилиндре открыты одновременно впускной и выпускной клапан.

Однако наибольшее распространение получили фазорегуляторы или, как их еще называют, фазовращатели. Представляют собой фазовращатели гидроуправляемые муфты, которые крепятся на концах распредвалов со стороны их привода. Корпус муфты жестко связан с приводом распредвала. Ротор в свою очередь соединен с распредвалом.

Регулирование углового положения вала производится с помощью электрогидравлического распределителя. В зависимости от команд блока управления двигателем золотник распределителя перемещается и открывает каналы, по которым масло из системы смазки под давлением поступает во внутреннюю полость муфты.

А далее все зависит от исполнения муфты. Есть муфты, в которых под действием давления масла корпус и ротор раздвигаются.

Связаны корпус и ротор косозубым шлицевым соединением, поэтому ротор, перемещаясь, еще и поворачивается вместе с распредвалом на определенный угол.

Другие муфты фазовращателей работают по принципу гидромотора. Поступающее в муфту масло давит на лопасти ротора с соответствующей стороны, чем обеспечивается поворот распредвала.

После поворота на нужный угол золотник распределителя устанавливается в положение, при котором в полостях с каждой стороны лопасти поддерживается одинаковое давление.

Фазорегуляторы могут использоваться только для распредвала впускных клапанов, однако для более точного регулирования фаз газораспределения необходимо их применение на каждом из распредвалов. Это позволяет изменять положение впускного и выпускного распредвалов независимо друг от друга.

Диапазон фазорегуляторов немал. В некоторых системах угол поворота составляет свыше 60 градусов. Электроника формирует команды путем сравнения информации, полученной от различных датчиков, с параметрами, заложенными в памяти. При выходе из строя управляющих компонентов системы изменения фаз муфта под давлением масла занимает строго определенное положение. Двигатель будет работать, но с понятными потерями в динамических и экономических показателях.

Исключение — неисправность датчика частоты вращения и положения коленвала. При прекращении подачи сигнала от этого датчика мотор останавливается и не может быть запущен вновь. Подобная ситуация возможна при выходе из строя сразу обоих датчиков положения впускного и выпускного распредвалов. В этом случае двигатель будет работать до первой остановки, но последующий запуск становится невозможным.

Позже появились другие системы, согласующие с режимом работы двигателя не только моменты открытия и закрытия клапанов, но и высоту подъема клапана из седла. Однако каким бы разным по концепции и конструкции регулирование газораспределения ни было, есть одно обстоятельство, которое уравнивает все системы независимо от их устройства.

Они работают благодаря нагнетанию и давлению масла в полости компонентов, поэтому срок службы механизмов, которые обеспечивают изменение фаз газораспределения, определяется увеличением зазоров по причине износа трущихся деталей. Увеличились зазоры — увеличились утечки масла, что ведет к падению давления и, как следствие, некорректному регулированию фаз.

Износ, как известно, может быть естественным и преждевременным. Ускоряют износ посторонние включения в масле. Помимо износа на работоспособность компонентов гидравлики, управляющей фазорегуляторами, способен повлиять шлам, представляющий собой отложения продуктов старения масла.

Со временем стареют уплотнения в фазорегуляторах. Их негерметичность опять-таки ведет к потерям масла и падению давления.

Фазорегуляторы могут выйти из строя также из-за износа и смятия установочных штифтов и фиксаторов. Подобный случай мы рассматривали в статье «Рвется, где тонко, или Каких бед натворила экономия в 8 рублей на цене фильтра». Уже одно название говорит, что и здесь не обошлось без проблем с маслом, создал которые масляный фильтр. Это очередной раз подтверждает значение качества смазки и необходимость соблюдения требований, установленных производителем двигателя к характеристикам моторного масла и своевременной замене масла и масляного фильтра.

Авто обзоры

Полезные советы и инструкции по ремонту и тюнингу автомобилей

Система изменения фаз газораспределения, принцип работы VVT

Разрезная шестерня, позволяющая регулировать фазы открытия/закрытия клапанов, ранее считалась принадлежностью лишь спортивных автомобилей. Во многих современных двигателях система изменения фаз газораспределения используется штатно и работает не только на благо повышения мощности, но и для снижения расхода топлива и выбросов вредных веществ в окружающую среду. Рассмотрим, как работает Variable Valve Timing (международное название систем такого типа), а также некоторые особенности устройства VVT на автомобилях BMW, Toyota, Honda.

Фиксированные фазы

Фазами газораспределения принято называть моменты открытия и закрытия впускных и выпускных клапанов, выраженные в градусах поворота коленчатого вала относительно НМТ и ВМТ. В графическом выражении период открытия и закрытия приято показывать диаграммой.

Если мы говорим о фазах, то изменению могут поддаваться:

  • момент начала открытия впускных и выпускных клапанов;
  • продолжительность нахождения в открытом состоянии;
  • высота подъема (величина, на которую опускается клапан).

Преобладающее большинство двигателей имеют фиксированные фазы газораспределения. Это значит, что описанные выше параметры определяются лишь формой кулачка распределительного вала. Недостаток такого конструктивного решения в том, что рассчитанная конструкторами форма кулачков для работы двигателя будет оптимальной только в узком диапазоне оборотов. Гражданские двигатели проектируются таким образом, чтобы фазы газораспределения соответствовали обычным условиям эксплуатации автомобиля. Ведь если сделать двигатель, который очень хорошо будет ехать «с низов», то на оборотах выше средних крутящий момент, как и пиковая мощность, будет слишком низким. Именно эту проблему решает система изменения фаз газораспределения.

Принцип действия VVT

Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:

  • поворотом распределительного вала относительно шестерни распредвала;
  • включением в работу на определенных оборотах кулачков, форма которых подходит для мощностных режимов;
  • изменением высоты подъема клапанов.

Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.

  • Рено Variable Cam Phases (VCP).
  • БМВ – VANOS. Как и у большинства автопроизводителей, изначально подобной системой укомплектовывался только распределительный вал впускных клапанов. Система, в которой гидромуфты изменения фаз газораспределительного механизма устанавливается и на выпускной распредвал, называется Double VANOS.
  • Тойота Variable Valve Timing with intelligence (VVT-i). Как в случае с БМВ, наличие системы на впускном и выпускном распредвалах именуется Dual VVT.
  • Хонда — Variable Timing Control (VTC).
  • Фольксваген в данном случае поступили более консервативно и выбрали международное название — Variable Valve Timing (VVT).
  • Хюндай, Киа, Вольво, GM — Continuous Variable Valve Timing (CVVT).

Как фазы влияют на работу двигателя

Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах. Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя. Упомянутые колебания способны как приносить пользу, создавая резонансный наддув (подробней об акустическом наддуве в статье о системе изменения геометрии впускного коллектора), так и вред – паразитные колебания, застои. Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.

На низких оборотах максимальное наполнение цилиндров будет обеспечивать позднее открытие выпускного клапана и раннее закрытие впускного. В таком случае перекрытие клапанов (положение, в котором выпускные и впускные клапаны одновременно открыты) минимально, поэтому исключается возможность выталкивания оставшихся в цилиндре выхлопных газов обратно во впуск. Именно из-за широкофазных («верховых») распределительных валов на форсированных моторах часто приходится устанавливать повышенные обороты холостого хода.

На высоких оборотах для получения максимальной отдачи от двигателя фазы должны быть максимально широкими, так как за единицу времени поршни будут прокачивать намного больше воздуха. При этом перекрытие клапанов будет положительно влиять на продувку цилиндров (выход оставшихся выхлопных газов) и последующую наполняемость.

Именно поэтому установка системы, позволяющей подстроить фазы газораспределения, а в некоторых системах и высоту подъема клапанов, под режим работы двигателя, делает двигатель эластичней, мощней, экономичней и в то же время дружелюбней к окружающей среде.

Устройство, принцип работы VVT

За угловое смещение распределительного вала отвечает фазовращатель, представляющий собой гидромуфту, работой которой управляет ЭБУ двигателя.

Конструктивно фазовращатель состоит из ротора, который соединен с распредвалом, и корпуса, наружная часть которого является шестерней распределительно вала. Между корпусом гидроуправляемой муфты и ротором находятся полости, заполнение которых маслом приводит к перемещению ротора, а, следовательно, и смещению распредвала относительно шестерни. В полости масло подается по специальным каналам. Регулировка количества поступающего через каналы масла осуществляется электрогидравлическим распределителем. Распределитель представляет собой обычный электромагнитный клапан, который управляется ЭБУ посредством ШИМ-сигнала. Именно ШИМ-сигнал делает возможным плавное изменение фаз газораспределения.

Система управления, в образе ЭБУ двигателя, использует сигналы следующих датчиков:

  • ДПКВ (рассчитывается частота вращения коленчатого вала);
  • ДПРВ;
  • ДПДЗ;
  • ДМРВ;
  • ДТОЖ.

Системы с разной формой кулачков

Ввиду более сложной конструкции, система изменения фаз газораспределения посредством воздействия на коромысла клапанов кулачков разной формы получила меньшее распространение. Как и в случае с Variable Valve Timing, автоконцерны используют разные обозначения для обозначения схожих по принципу работы систем.

  • Хонда — Variable Valve Timing and Lift Electronic Control (VTEC). Если на двигателе одновременно используется и VTEC, и VVT, то такая система носит аббревиатуру i-VTEC.
  • БМВ – Valvelift System.
  • Ауди — Valvelift System.
  • Тойота — Variable Valve Timing and Lift with intelligence от Toyota (VVTL-i).
  • Митсубиши — Mitsubishi Innovative Valve timing Electronic Control (MIVEC).

Система VTEC от Honda является, пожалуй, одной из самых известных, но и остальные системы работают по схожему типу.

Как вы можете увидеть из схемы, в режиме низких оборотов усилие на клапаны через коромысла передается набеганием двух крайних кулачков. При этом среднее коромысло двигается «вхолостую». При переходе в режим высоких оборотов давлением масла выдвигается запорный шток (блокирующий механизм), который превращает 3 коромысла в единый механизм. Увеличение хода клапанов достигается за счет того, что среднему коромыслу соответствует кулачок распредвала с наибольшим профилем.

Разновидность системы VTEC является конструкция, в которой режимам: низких, средних и высоких оборотов соответствуют разные коромысла и кулачки. На низких оборотах кулачком меньшей формы открывается только один клапан, в режиме средних оборотов два меньших по форме кулачка открывают 2 клапаны, а на больших оборотах наибольший кулачок открывает оба клапаны.

Крайний виток развития

Ступенчатое изменение продолжительности открытия и высоты подъема клапанов позволяет не только изменять фазы газораспределения, но и практически полностью снять с дроссельной заслонки функцию регулирования нагрузки на двигатель. Речь в первую очередь о системе Valvetronic от BMW. Именно специалисты БМВ впервые добились подобных результатов. Сейчас схожими разработками обладают: Toyota (Valvematic), Nissan (VVEL), Fiat (MultiAir), Peugeot (VTI).

Открытая на небольшой угол дроссельная заслонка создает значительное противодействие движению воздушных потоков. В итоге часть полученной от сгорания топливовоздушной смеси энергии уходит на преодоление насосных потерь, что негативно сказывается на мощности и экономически автомобиля.

В системе Valvetronic количество поступающего в цилиндры воздуха регулируется степенью подъема и продолжительностью открытия клапанов. Реализовать это получилось при помощи внедрения в конструкцию эксцентрикового вала и промежуточного рычага. Рычаг связан червячной передачей с сервоприводом, управляет которым ЭБУ. Изменения положения промежуточного рычага смещает воздействие коромысла в сторону большего или меньшего открытия клапанов. Более подробно принцип работы показан на видео.

Поделиться «Система изменения фаз газораспределения, принцип работы VVT»